Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Experimental & Molecular Medicine ; : e22-2013.
Article in English | WPRIM | ID: wpr-158223

ABSTRACT

The accumulation of abnormal protein aggregates is a major characteristic of many neurodegenerative disorders, including Parkinson's disease (PD). The intracytoplasmic deposition of alpha-synuclein aggregates and Lewy bodies, often found in PD and other alpha-synucleinopathies, is thought to be linked to inefficient cellular clearance mechanisms, such as the proteasome and autophagy/lysosome pathways. The accumulation of alpha-synuclein aggregates in neuronal cytoplasm causes numerous autonomous changes in neurons. However, it can also affect the neighboring cells through transcellular transmission of the aggregates. Indeed, a progressive spreading of Lewy pathology among brain regions has been hypothesized from autopsy studies. We tested whether inhibition of the autophagy/lysosome pathway in alpha-synuclein-expressing cells would increase the secretion of alpha-synuclein, subsequently affecting the alpha-synuclein deposition in and viability of neighboring cells. Our results demonstrated that autophagic inhibition, via both pharmacological and genetic methods, led to increased exocytosis of alpha-synuclein. In a mixed culture of alpha-synuclein-expressing donor cells with recipient cells, autophagic inhibition resulted in elevated transcellular alpha-synuclein transmission. This increase in protein transmission coincided with elevated apoptotic cell death in the recipient cells. These results suggest that the inefficient clearance of alpha-synuclein aggregates, which can be caused by reduced autophagic activity, leads to elevated alpha-synuclein exocytosis, thereby promoting alpha-synuclein deposition and cell death in neighboring neurons. This finding provides a potential link between autophagic dysfunction and the progressive spread of Lewy pathology.


Subject(s)
Animals , Humans , Mice , Adenine/analogs & derivatives , Autophagy/drug effects , Cell Line , Exocytosis/drug effects , Extracellular Space/metabolism , Mice, Knockout , Microtubule-Associated Proteins/deficiency , Phagosomes/drug effects , Protein Structure, Quaternary , Protein Transport/drug effects , alpha-Synuclein/chemistry
2.
Experimental & Molecular Medicine ; : 216-222, 2011.
Article in English | WPRIM | ID: wpr-187631

ABSTRACT

Parkinson's disease (PD) is characterized by selective and progressive degeneration of dopamine (DA)-producing neurons in the substantia nigra pars compacta (SNpc) and by abnormal aggregation of alpha-synuclein. Previous studies have suggested that DA can interact with alpha-synuclein, thus modulating the aggregation process of this protein; this interaction may account for the selective vulnerability of DA neurons in patients with PD. However, the relationship between DA and alpha-synuclein, and the role in progressive degeneration of DA neurons remains elusive. We have shown that in the presence of DA, recombinant human alpha-synuclein produces non-fibrillar, SDS-resistant oligomers, while beta-sheet-rich fibril formation is inhibited. Pharmacologic elevation of the cytoplasmic DA level increased the formation of SDS-resistant oligomers in DA-producing neuronal cells. DA promoted alpha-synuclein oligomerization in intracellular vesicles, but not in the cytosol. Furthermore, elevation of DA levels increased secretion of alpha-synuclein oligomers to the extracellular space, but the secretion of monomers was not changed. DA-induced secretion of alpha-synuclein oligomers may contribute to the progressive loss of the dopaminergic neuronal population and the pronounced neuroinflammation observed in the SNpc in patients with PD.


Subject(s)
Humans , Blotting, Western , Cell Line, Tumor , Dopamine/metabolism , Levodopa/pharmacology , Neurons/metabolism , Parkinson Disease/metabolism , Substantia Nigra/metabolism , alpha-Synuclein/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL